16,267 research outputs found

    Optimizing Filter-Probe Diffusion Weighting in the Rat Spinal Cord for Human Translation

    Get PDF
    Diffusion tensor imaging (DTI) is a promising biomarker of spinal cord injury (SCI). In the acute aftermath, DTI in SCI animal models consistently demonstrates high sensitivity and prognostic performance, yet translation of DTI to acute human SCI has been limited. In addition to technical challenges, interpretation of the resulting metrics is ambiguous, with contributions in the acute setting from both axonal injury and edema. Novel diffusion MRI acquisition strategies such as double diffusion encoding (DDE) have recently enabled detection of features not available with DTI or similar methods. In this work, we perform a systematic optimization of DDE using simulations and an in vivo rat model of SCI and subsequently implement the protocol to the healthy human spinal cord. First, two complementary DDE approaches were evaluated using an orientationally invariant or a filter-probe diffusion encoding approach. While the two methods were similar in their ability to detect acute SCI, the filter-probe DDE approach had greater predictive power for functional outcomes. Next, the filter-probe DDE was compared to an analogous single diffusion encoding (SDE) approach, with the results indicating that in the spinal cord, SDE provides similar contrast with improved signal to noise. In the SCI rat model, the filter-probe SDE scheme was coupled with a reduced field of view (rFOV) excitation, and the results demonstrate high quality maps of the spinal cord without contamination from edema and cerebrospinal fluid, thereby providing high sensitivity to injury severity. The optimized protocol was demonstrated in the healthy human spinal cord using the commercially-available diffusion MRI sequence with modifications only to the diffusion encoding directions. Maps of axial diffusivity devoid of CSF partial volume effects were obtained in a clinically feasible imaging time with a straightforward analysis and variability comparable to axial diffusivity derived from DTI. Overall, the results and optimizations describe a protocol that mitigates several difficulties with DTI of the spinal cord. Detection of acute axonal damage in the injured or diseased spinal cord will benefit the optimized filter-probe diffusion MRI protocol outlined here

    External loading determines specific ECM genes regulation

    Get PDF
    Bio artificial matrices embedded with cells are simulated in bioreactors to facilitate ECM production. As cells attach, they develop forces, which are dependent on cell type and matrix stiffness. External forces (i.e strain), however, are critical for tissue homeostasis and elicit specific cellular responses, such as gene expression and protein production. Collagen Type I is a widely used scaffold in Tissue engineering. The aim of this study was to study the mechanical and molecular responses, of different cell types to increasing collagen substrate stiffness

    Activation of Long Descending Propriospinal Neurons in Cat Spinal Cord

    Get PDF
    Isolated mammalian spinal cord has been shown capable of generating locomotor activity. Propriospinal systems assumed to coordinate fore- and hindlimb activity are poorly understood. This study characterizes the long descending propriospinal (LDP) neurons in terms of the location of the somas and their peripheral inputs by direct neuronal recording. Anatomical studies using axonal retrograde transport of horseradish peroxidase from the lumbar to the cervical spinal cord as a tracer first described these neurons. Two hundred and thirty-one LDP neurons were identified in electrophysiological experiments. Of these, 123 responded to natural stimulation, and about 50% of the others were activated only by electrical stimulation. The majority of cells were located in laminae VII and VIII in agreement with anatomical data. The most effective stimuli were mechanical stimulation of skin, deep pressure to subcutaneous tissues, and paw joint movement. Bot excitatory and inhibitory responses were observed

    Connections of the Mesencephalic Locomotor Region (MLR) in the Cat

    Get PDF
    The cat entopeduncular nucleus (EN), which is the main output of the basal ganglia, is known to project to the mesencephalic tegmentum. We have been able to elicit antidromic responses in single EN neurons from the region of the mesencephalic locomotor region (MLR), then transect (precollicular-postmamillary) the brainstem and elicit rhythmic movements of the limbs by stimulation of the same site in the same animal. Injections of the fluorescent dye 2,4 diamidino phenylindole 2 HCL (DAPI) into this area induces retrograde labeling of cell bodies in EN and motor cortex. Injections of a tritiated amino acid (leucine) into the motor cortex induce terminal labeling in the area of the MLR. These studies describe convergent projections from EN and motor cortex to the MLR. These connections may be involved in the sequencing and ordering of voluntary movements in which locomotion is necessary

    The Gendering of Cancer Survivorship

    Get PDF
    This article examines the relationship between gender and cancer survivorship. I argue that gender is as critical as a category of analysis for understanding cancer survivorship as it is missing from survivorship studies, particularly as concerns the identificatory basis of survivor culture and clinical studies regarding survivors’ quality of life (QOL). This under-studied question of the gendering of survivorship is critical because the consequences of the social production of disease is far-reaching, from the nature of medical research to social awareness, to funding to the well-being of cancer survivors themselves

    Development of Ground-testable Phase Fresnel Lenses in Silicon

    Full text link
    Diffractive/refractive optics, such as Phase Fresnel Lenses (PFL's), offer the potential to achieve excellent imaging performance in the x-ray and gamma-ray photon regimes. In principle, the angular resolution obtained with these devices can be diffraction limited. Furthermore, improvements in signal sensitivity can be achieved as virtually the entire flux incident on a lens can be concentrated onto a small detector area. In order to verify experimentally the imaging performance, we have fabricated PFL's in silicon using gray-scale lithography to produce the required Fresnel profile. These devices are to be evaluated in the recently constructed 600-meter x-ray interferometry testbed at NASA/GSFC. Profile measurements of the Fresnel structures in fabricated PFL's have been performed and have been used to obtain initial characterization of the expected PFL imaging efficiencies.Comment: Presented at GammaWave05: "Focusing Telescopes in Nuclear Astrophysics", Bonifacio, Corsica, September 2005, to be published in Experimental Astronomy, 8 pages, 3 figure

    Perceptions of Positive Relationship Traits in Gay and Lesbian Couples

    Get PDF
    The following study examined perceptions of positive traits in homosexual relationships. Students (n = 216) and professional counselors (n = 96) read one of three variations of a transcript of a couple’s counseling session that were identical in all aspects except for the names of the couple members and associated pronouns, implying sexual orientation (either John and Amy, Amy and Jennifer, or John and David). Participants then rated the couple’s level of commitment, satisfaction, investment, and closeness. Surprisingly, the student group perceived no differences between the couples, but the counselor group perceived the gay and lesbian couples as having higher levels of the positive relationship traits. Implications regarding counselor bias are discussed

    On the high coherence of kilo-Hz Quasi-Periodic Oscillations

    Full text link
    We have carried out a systematic study of the properties of the kilo-Hertz quasi-periodic oscillations (QPO) observed in the X-ray emission of the neutron star low-mass X-ray binary 4U1608-52, using archival data obtained with the Rossi X-ray Timing Explorer. We have investigated the quality factor, Q, of the oscillations (defined as the ratio of the frequency of the QPO peak to its full width at half maximum). In order to minimise the effect of long-term frequency drifts, power spectra were computed over the shortest times permitted by the data statistics. We show that the high Q of ~200 reported by Berger et al. (1996) for the lower frequency kilo-Hz QPO in one of their observations is by no means exceptional, as we observe a mean Q value in excess of 150 in 14 out of the 21 observations analysed and Q can remain above 200 for thousands of seconds. The frequency of the QPO varies over the wide range 560--890 Hz and we find a systematic trend for the coherence time of the QPO, estimated as tau=Q /(pi nu), to increase with the frequency, up to a maximum level at ~ 800 Hz, beyond which it appears to decrease, at frequencies where the QPO weakens. There is a more complex relationship between tau and the QPO root mean squared amplitude (RMS), in which positive and negative correlations can be found. A higher-frequency QPO, revealed by correcting for the frequency drift of the 560-890 Hz one, has a much lower Q (~10) which does not follow the same pattern. We discuss these results in the framework of competing QPO models and show that those involving clumps orbiting within or above the accretion disk are ruled out.Comment: Accepted for publication in MNRAS, 8 pages, 6 figures, 3 Table
    • …
    corecore